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Abstract. In this paper a general framework for modeling and simulation of the
dynamic, three-dimensional motion response of the human lumbar-spine is
presented. Lumbar vertebrae were modeled as rigid bodies and all other flexible
joint structures (i.e. ligaments, cartilage, muscles, and tendons) were modeled
collectively as massless springs and dampers. Coupling coefficients, providing
additional constraints, were incorporated in the model. Unknown model
coefficients (nominally spring, damping and coupling coefficients) were
automatically determined by systematically matching the model predictions to
spine displacement-time data. A robust parameter optimization module (Monte
Carlo routine and genetic algorithm) was developed for this purpose.

1 Introduction

The human spine has over 100 articulating joints, which are comprised of “rigid”
structures (vertebral bodies) and “flexible joint structures” (i.e. ligaments, cartilage,
muscles, and tendons) that permit complex and coupled motion patterns. Loads and
daily activities impart demands on the spine that often lead to spinal dysfunction and
pain, particularly in the lumbar region where loads and moments are generally the
highest. Development of reliable methods and tools to quantify the force-induced
displacement response of the spine is an important first step toward understanding and
predicting vertebral mechanical behavior. Without resorting to invasivg spine
measurements techniques, precise assessment of clinically relevant variables, such as
vertebral and intervertebral displacements and stiffness, is very difficult to obtain
(Colloca et al., 2001). Mathematical models are therefore often used to quantify the
forces and moments acting on the spine. The mechanical response of the spine to
externally applied static and dynamic forces is dependent on the complex interaction
between the flexible joint structures (FJS) and rigid structures that comprise the
function spinal unit. The lumbar spine vertebrae were modeled as five rigid bodies
representing vertebral segments L1 to LS. Each vertebra was treated as a rigid-body
mass possessing six displacement degrees of freedom: three components of
translation and three components of rotation. All other flexible joint structures (i.e.
ligaments, disc, muscles, tendons, and cartilage) or FJS were modeled as massless
springs (elastic elements) and dampers (viscous elements) constraining the motion of
the vertebrae in the six degrees of freedom. The flexible connections to the upper and
lower part of the spine (thorax and pelvis) were also represented as spring-dashpot
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mechanical elements. Figure 1 shows a schematic diagram of the mechanical
equivalence of the lumbar spine and the coordinate system.
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Figure 1. Schematic diagram of the mechanical equivalence of the lumbar spine with
description of the coordinate System

Table 1. Vertebrae mass and inertia properties

Property L| L, Ls | Ls

Mass (kg) 0.17 0.17 0.114 0.114 0.114

L (10%kem® .- 267 -245 16.5 14.8 25
Iy (10%kgm®> 342 31 17401204 31

I, (10%kgm®> 368 36 222 26.5 40.3
I, (10%kgm®> -7.8  -69 28 1.4 2.12

Two solvers are implemented in the simulator. For parameter estimations, a ﬁ.rst order
finite difference procedure is implemented to speed up calculations. For the simulator
a fourth order Runge-Kutta procedure is implemented for high accuracy.
Fei—mgsin(6,) =m, (&+qw, ~rv,)

yi 25 mlgcos(gl) Sln(¢l) =m, (‘&+rlul —pw :)
F;: +n1’gCOS(0, ) Sln(¢:) =m, (M&.*'prvt —q‘ll‘)
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Figure 2. The simulator block diagram
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M, =(1,),B~(1.),8+qr (1. ~1,),~(1,.),pg,
M, =(1,),@+qr(l,~1.),+(1.),(p}-r})
M:/ Wk (IX:)'I&+([-')VKI&'+qlp:(Iy _I:): _(Ixz)irlql

& =g, cos(4,) ~r,sin(¢)
#=p, +q,sin($,)tan(6,) -r,cos(9,) tan(6,)
W =(q,sin(g)—r cos(4,)) sec(6,)

)




Simulating Lumbar Spine Motion: Parameter Estimation JSor Realistic Modeling

[ax
@1 [CoCy, S#S6CY,-CdSy, C4SOCy, +S4Sw,Tu
D\ =|casy, S4sasw,+ChCy, C4565y,-S4Cy, ||v
o -s6 S4CH C4CH, W

dt ],

where  Cx, =cos(x,), Sx,=sin(x,)

L, constraints:

ko (x,~x,)—k,(u -u,)- =k

kU Yi=¥2) —k (v, =v,) -k, L,to L, constraints (i=2, 3, 4):
~k.(z,-z,)—k, (w,=w,)—k,z,

‘_—k o 6 - ¢,) - k,,(Pl p.) - k4|¢|

M, =—/(,,(9,—92)—kq(ql-—q1)-—k,,,91

RIS
ll

M- =_kv»(‘//1_'//z)_kr(’l_’z)"km%

Fo=—k (-x,,+2x, - X,0) =k, (—u,_ +2u, -u,_)
Fomhy(=y, 042y, -y00) ko (v, 4D, -v,,.) Ls constraints:
F,=-k_(-z a*2z, -z, )=k (-, +2w, -w,, )

M, =-k o =0, +2¢, _¢,.1)"k (=P +2p,-p,.)
M,=-k,-6_+26,-6.)-k,(-q,_+2,-q,.)

Mo ==k (=y, o +20, =y, )=k (~r,_ +2r,-r, )

Y k,(x,—,\'J)—k,,(us—ui)—k,zx5

Fo==k (ys=y )=k, (vi-v,)—k,p, @)
F,=- k. (z5-z,) -k, (Ws-w, )—k,,z,

M, =—k,(§;=8,) —k,(ps—p,) -k,

M, =—k,,(€$—9_,)—kq(q5—q1)—k,,295

M, =‘k.,,(‘/’<“//4)“kr("s—"a)‘kv,:'//s

F,,=-k s las a=—k, F.,

Fuy=k, F.—k_F., M=k, Fo-knF., (33)
Fz”—k:\.F\_z—k“FN M =k, F.,-k,F.,
F;44=k:vF\~l—k2\'Fr5 M = ko Fion=ks B
F.s=k,F., M =k,F.,

Fo= =k, F.3 L,= _kw_.vF.
RSN L=k, F,~k,F, (b
F':”=/(:VI,F‘_2—/(_,‘_FrJ L,,=/('}”F‘3—I(WF‘,J
Fug=k, F, —k,F,, Lol B p T

’::‘5=/“z| Fr-l Ld:kv'lFN

483



484 Ahmed Sameh

The parameter estimation algorithm proceeds as follows:

1- Initialize parameters (spring and dashpot coefficients).

2- Run the simulator with known input-output data pairs.

3- Calculate the simulator output and compare it with the actual spine output and calculate the
error function.

4- Repeat steps 1-3 through the optimizer to minimize the error function till reaching minimum.
5- End.

The optimizer uses a robust optimization procedure based on a Monte Carlo
procedure followed by genetic algorithm (GA) detailed in the following section.
Parameter estimates for the spring, damper and coupling coefficients are not generally
available, or are highly variable. Hence, a Monte Carlo technique (Murray, 1972) was
employed to obtain candidate solutions to start a genetic algorithm (GA) (Goldberg,
1989). The Monte Carlo technique implemented in the optimizer is as follows:

1- Generate the unknown parameters randomly.

2- Substitute into the cost function and calculate the error.
3- Repeat step 1 and 2 (n) times.

4- Keep the best m trails with the minimum error.

5- Pass these trials to the GA algorithm.

The GA proceeds with the initial population taken from the Monte Carlo procedure.
The full optimizer block diagram is shown in Figure 4.
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Figure 4. Block diagram of the unknown spring, damper and coupling coefficient
parameter estimation procedure
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i i re
Alternatively, if initial spring, damper and coupling parameters esitlmeadte.; oi :
available, then an optimization technique such as steepest decent is employed.
single variable, this can be written as

cost function (f) = I]e(t)| dt
where e(t) = Vm (t)- Vioda (1),

i istori i al cost
For multiple variables, such as displacement-time histories for different axes, the tot

i i i ighti tants as
function is just the summation of cost function of each variable with weighting cons
follows:

Total cost function (F) = Wi+ W, f, + +w =

w, f[e,(t)l dt+w, Ilez(t)l dt+..+w, _ﬂe,. (v]dt
Six displacement-time histor

ies data represent the posteroanterior (PA or X-axis) displacement,
axial (AX or Z-axis) displa

cement, and flexion extension (FE) rotation (about Yl:a();if()J f:; lll,‘;
L3 and L3-L4 vertebra| segments subjected to an impulsive f9rce of 100 N apph;:mries f
vertebra of a 36 year old, 185 cm, 82 kg male volunteer. Displacement-time b

cost
€qual time steps (0.2 msec.) were obtained from Keller’s model (Keller et al.,2002). The
function is given by :

[
Total cost function (F) = D

i=]
where

& =) |(axial displacement, . - axial displacementMm, ) forL,
& = 3 |(axial displacementm;k, - axial displacementy,,, )| for L,
& = Z|(PA displacement,, . - P4 displacement,,,,)| for L,
€= |(P4 displacement, - P4 displacement,,,,,)| for L,
&= |(FE displacement, ,, - FE displacement,,,,)| for L,

& =Y |(FE displacement, ,, — FE displacement,,q,, )| for L,

The cost function is given by

3
Total cost function (F) = e
1=l

Where
& = Zl( axial rotation,,, -axial rotation,,, )l forL,
&= ZI( lateral bending.,, ~lateral bending,,, )l forL,

&= ZI( flextion extensiony,,. —flextion extensiony, )' forL,

2 Results

i ter optimized
Figure 5 graphically illustrates the cxpenmentgl (Keller et al 2Q02) ?ensd %1(:?3;1 o Spdcmed
axial (AX), transverse (PA), and FE rotation displacement-time hlstpn l.le B
from the i’mpulsivc force optimization procedure were used to simula :
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oscillatory force response (100 N peak amplitude). The model predictions compare favorably
with experimental results (Table 2, 3).
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Figure 5. Experimental and parameter optimized axial (AX), transverse (PA), and FE rotation
displacement-time histories

Table 2. Peak-to-peak displacements obtained for static PA forces of 100N.

Vertebral ~ Displacement  Keller’'s  Spinal % error
Segment Axis Model
L; PA (mm) 7.97 7.95 0.2

AX (mm) 0.131 0.137 -1.9

FE rotation (°)  0.374 0.355 4.99
L4 PA (mm) 5.42 5.38 0.3
AX (mm) 0.70 0.759 -8.6

FE rotation (°) 1.83 2.03 -10.8
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Table 3. PA Peak-to-peak L;, L;-L,4 response sinusoidal force at L;

2Hz 5.2Hz

L, Ly-Ls L, Ls-La
Keller’s data [2] 8.23 2.65 7.67 2.55
Spinal model 7.2 23 6.1 2
% error 12.2 13.1 19 21
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Figure 6. Comparison between experimental work of Evans and current model for movement
pattern of the lumbar spine in the 3 anatomical planes

Figure 6 shows comparison between experimental work of Evans et al. (2005) and
current model for movement pattern of the lumbar spine in the 3 anatomical planes
(axial rotation, lateral bending and flextion-extension) during right rotational
mobilization movement with respect to the initial starting positions. These are the data
used to predict the rotational stiffness. Figure 7 compares between Ralph et. :al.
(2005) work and the current model for the FE response for cyclic excitation with
magnitude SN.m . A least-squares linear fit is also ploted which agrees with the m9del
predection. Snap shots of the lumbar spine motion response to PA excitation obtained
from the simulator visualization module are shown in Figure 8. Each frame

corresponds to a 20 ms time step for 100 N impulsive PA load. The motion response

is amplified 400 times for clarity.



488  Ahmed Sameh




Simulating Lumbar Spine Motion: Parameter Estimation for Realistic Modeling 489

3 Conclusions

The semi-analytical lumbar spine dynamic motion simulator was tested using PA, FE
and axial segmental and intersegmental displacement-time data obtained from
impulsive force experiments and angular movement pattern from rotational
mobilization. Parameter optimized model simulations showed good agreement with
the test data, and subsequent independent validation of the static and oscillatory
displacement response demonstrated that impulsive force and rotational mobilization
test data can be used to predict the lumbar spine motion response during other types
of loading conditions. Lumped parameter models, therefore, provide an efficient and
effective method to determine the vertebral and/or intervertebral displacement-time
history response of the lumbar spine to static, dynamic and impact forces.
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